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Summar 7 

Molecular motions of elastomers under deformations were 

observed through dynamic mechanical measurements. Composite 

master curves of dynamic moduli E' and E" and loss tangent 

tan6 over a wide range of frequency and in a state of elon- 

gation were obtained by the time-temperature superposition 

procedure. It is found that both moduli increase with strain, 

y. The slope of the dispersion curve of E' become more grad- 

ual with the increase in y, while that of E" is almost un- 

changed. The increment of E' is generally larger than that 

of E", which does not agree with the N. W. Tschoegl predic- 

tion~ E~(V ) = f(y ) E~(V ) , where E~(V ) and E~(V ) are 

complex moduli at the strain ofyand O, respectively, and 

f(y ) is the function of only y. The difference in the 

strain dependence of E' from E" was found to correspond to 

the strain dependence of the equilibrium modulus. 

Introduction 

The elongation of elastomers can produce partially or- 

dered orientation of molecules. The orientation is expected 

to affect the molecular motion in the elastomers, which re- 

suits the viscoelastic behavior characteristic of the de- 

formed elastomers. The dynamic measurement is useful to 

study the relation between the characteristic viscoelastic 

behavior and the molecular motion in the deformed elastomer. 

Practically most of elastomers have been used as mechanical 

components under their statically and dynamically deformed 
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state. While the effect of temperature on molecular motion 

in elastomer is fairly well understood, relatively little in- 

formation is available on the effect of elongation. In this 

study the sample is extended to several strains ranging from 

O.1 to 4 and a small amplitude sinusoidal deformation is 

added on it. The temperature is changed from -60~ to 20~ 

Experimental 

This work was carried out on a cis-l,4-polyisoprene dis- 

tributed by the General Science Corp. Films of cis-l,4-poly- 

isoprene were made by casting the concentrated benzene solu- 

tion on a glass plate at room temperature. All films were 

dried for a week. Films were crosslinked by V-ray irradia- 

tion at lO~ in vacuo. The amount of dose was 40 Mrad. The 

degree of crosslinking was determined to be 5.4 X lO -5 mol 

/ cm 3 by measuring static Young's modulus. Wide angle x-ray 

diffraction patterns were obtained at 15~ for films under 

several strains between 1 to 3 (the strain was defined as 

y= ( L - L )/ L where L is the extended length and L is 
O O O 

the initial length). At this temperature no crystallites 

were observed in the system up to the strain of 3. 

At first the sample is extended to some strain, y , and 

kept under this condition until the stress is nearly relaxed. 

Then a small sinusoidal deformation is added. The amplitude 

of this deformation, g (= 0.04 cm), is 3.0 % of the initial 

length L . By observing the respondent stress to ~ , the 
O 

dynamic moduli aty were obtained. 

Two series of measurements were performed; (I) V-depend- 

ence of the dynamic meduli E'( V ) and E"( V ) and loss tangent 

tanS(V ) (= E"/ E') at a constant temperature overy s ranging 

from 0.i to 4.0; (2) temperature dependence of the moduli at 

several ys ranging from i to 3 over a temperature range from 

20~ to -60~ 

According to Ferry reliable viscoelastic master curves 

can be obtained if the experimental window is sufficiently 

broad. In the present work, however, both series of measure- 

ments were performed over a frequency range from O.1 to 1 Hz. 
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This deficiency was 

compensated by per- 

forming measurements 

of isothermal-iso- 

strain segments for 

superposition at 

small intervals of 

temperature. 

Results and Discussion 

In Figure i, E', 

E", and tan 8 are plotted 

against the strain. 

Both moduli E' and E" 

increase monotonously 

with y . The slight 

difference in increas- 

ing rates withybetween 

E' and E" is reflected 
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Figure 1. ~-dependence of E', E", 
and tan 8 measured at frequencies 
of 0.i Hz (O) and 0.6 Hz ( �9 

in tan 8 as a decreasing and at the temperature of 23~ 

function. N. W. Tschoegl et al. presented the simplified 

superposition equation. 1-3 It is the type of variable sep- 

aration and has been proved to be suitable to explain many 

experimental results. As for the complex modulus, the equa- 
2 

tion is described as follows, 

/ 

where E~(v ) and E~(V ) are complex moduli under the strain 

andy = O, respectively, and f(~ ) is the function of~ex- 

pressed as 

f ( Y  ) = ( 3 / 2 ) (  a n-1 + 0 .5  - ( n + 2 ) / 2  ) (2)  

where ~ = ~+ 1 and n is a material parameter introduced by 

Tsehoegl. 2 From this equation, it is easily deduced that 

tanS(V ) should be independent of y. The result shown in 

Figure 1 does not follow the equation on the point that tan8 

decreases with~ . The Tschoegl equation has been derived on 

the basis that the relaxation spectrum would not be changed 

by the moderately large deformation. The reason of the dis- 
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Figure 2. Composite master curves of (a) E', (b) E", and 
(c) tan8 reduced to O~ for ~ = 1.2,--, 1.8, 
2.0, ---, 2.3, ..... n., and 2.4, ....... . 
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crepancy of our result from the Tschoegl equation was dis- 

cussed as follows; in order to investigate the effect of elon- 

gation on the molecular motion, we consider the three cases 

(possible and sufficient) concerning the relaxation spectrum 

(the relaxation time spectrum) and each relaxation time ~. : 
l 

(1) The relaxation spectrum is conserved and the relaxation 

time does not change. (2) The relaxation spectrum is con- 

served and the relaxation time changes. (3) Both the relax- 

ation spectrum and the relaxation time change. The Tschoegl 

equation is based on the case (1). 

To examine whether the relaxation spectrum is conserved 

or not in the experimental results for several elongated 

states, the results obtained from several constant strains 

were composed to a master curve which covers a wide range of 

frequency. In Figures 2 (a), (b), and (c), master curves of 

E', E", and tan8 , respectively, for several strains are 

shown. Experimental points, which are widely dispersed, are 

omitted for the sake of clarity. Each composite matser curve 

is reduced to O~ In order to obtain smooth master curves 

of E' and E" at low temperatures (below -5~ and for ~s 

larger than 2, vertical shifts of each isothermal segment are 

needed. The necessity of the vertical shift to superpose the 

frequency dispersion curves reminds us of the vertical shift 

reported for crystalline polymers, for which the vertical 

shift should be related to a change in the degree of crystal- 

linity with temperature or to that in the orientation of crys- 
4 

tallites in the amorphous matrix. It has also been known 

that if crosslinked natural rubber is maintained at a low 

temperature (e. g. O~ or lower) or in a elongated state, it 

gradually crystallizes. A possible explanation of our case 

can be made in terms of crystallization caused by maintaining 

rubbers at low temperatures under strain. 

It is found that both moduli increase with~. The in- 

crement in E' is generally larger than that in E". In order 

to give more detailed informations, master curves of E' and 

E" were replotted in Figure 3 for ~= 1.2 and 2.4 where the 
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dispersion of data points was smaller than others and the dif- 

ference in~ was relevant to observe the effect of ~. The 

slope of the master curve of E' becomes more gradual with the 

increase iny , while that of E" is almost unchanged. Remem- 

bering that the dispersion curve of E" is the zeroth approxi- 

mation of the relaxation spectrum, 5 we are able to consider 

that in our result the relaxation spectrum would not be changed 

by the strain. In order to discuss the difference between 

behaviors of both moduli under the strain, which also causes 

the discrepancy of our result from the Tschoegl equation, the 

expression of the dynamic moduli by the relaxation spectrum 

H(~ ) were aDpreciated, 

jf (2~V)2 2 
E'(V ) = E + H(~ ) ~ d in~ (3) 

e co 1 + (2~V) 2~2 

L ee 2 ~V �9 (4) 
H( �9 ) )2 2 E"(V ) = co i + (2WV 

d in% 

where E is a modulus at an equilibrium state. The term which 
e 

is responsible for the difference described above is guessed 

to be the additive term E in eq (3). When E increases with 
e e 

y, the slpoe of the log E' vs logva T curve should become 

gradual, which was the case of Figure 3. 

To estimate the increment in E with y, E' is compared 
e 

with E" as follows; 

E'/ E" = [E 
e 

+ ~_~oH( "~ ) ( 2Wv)2"C2 
i + (2WV)2~2 d in% ] 

co 
J_ }~('c ) 2 n v  

/ co i + (2WV)2%2 d in% 
(5) 

as the integral is independent of ~, E'/ E" would depend on 

E e linearly. In Figure 4, E'/ E" is plotted against A~ =Y-YO 

where Yo = 1.2. From this curve, the relation between both 

values is described as, 

log ( E'/ E" ) OC Ay �9 (6) 

Then empirically E can be expressed as 
e 

E (Ay) = X exp(AAu + Y (7) 
e 
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Figure 3. Composite master curvesjf E' for y = 1.2 
( �9 ) and 2.4 ( �9 ), and of E" for _= 1.2 ( O ) and 

2.4 (A). 
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Ay =u Yo 
where Yo = 1.2. 

where A, X, and Y are constants independent of~. 

As mentioned in the experimental part, at 15~ even 

under strains up to 3, we did not observe crystallites in the 

system. As the dependence of E e on~ is remarkable at room 

temperature, the crystallization by deformation is not respon- 

sible for the~ dependence of E . The exponential formed func- 
e 

tion in eq (7) is reminiscent of the correcting factor of the 

empirical or semiempirical expressions of the tensile stress- 
6-8 

strain relation at an equilibrium state, 

S = E (~) ( 1 1 ) (8) 
e ~ ~2 
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where S is the tensile stress based on the initial cross sec- 

tional area. As for E (y), exponential formed functions have 
e 

been proposed; that presented by Blanchard and Parkinson (BP) 6 

Ee ( ~ ) = E~ exp C I~ (9) 

and a purely empirical expression discovered by Martin, Roth, 

and Stiehler (MRS), 7 

E (u = E ~ exp C 2 ( a- 1 ). (lO) 
e e 

In both equations, E ~ represents an equilibrium modulus 
e 

at~ = 0 (~ = i). For crosslinked natural rubber C 1 = 0.5 and 

C 2 = 0.38. 6,7 Our value of A in eq (7) was found to be 0.4, 

which accords well with these values. Qualitatively C 1 and C 2 

are related to the finite degree of extension of polymer 
8 

chains. As BP and MRS equations deal with the equilibrium 

value of stress and modulus and our resultant equation (7) 

agrees with these equations, the exponential term in eq (7)is 

considered to be related to the exponential factors in both 

eqs (9) and (lO). Thus, the dependence of E e onywould be 

concluded to be related also to the finite degree of exten- 

sion of polymer chanis. 
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